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Abstract cide whether to produce a black or white dot. Dither
methods can suffer from contour artifacts (though, not

The error diffusion halftoning method preserves detailsas much as simple thresholding methods) and noise-like
well, but produces some unwanted regular texture paappearance. Also, the error minimization techniques
terns. The purpose of this paper is to introduce certaimentioned above are computationally very demanding.
nonlinear operators with small kernels for the error dif-If computation time, imaging process, and hardware of
fusion to reduce the regular patterns. The goal is to sughe application allow, an error diffusion method is a good
press pattern artifacts while maintaining a smallchoice, as it can produce higher quality images than or-
neighborhood. The method employed uses nonlinear didered dither.
fusion operators, which possess a relatively complex dis-  Error diffusion (with a small operator kernel) pre-
tribution mechanism, thereby suppressing noticeablserves details well, but produces some unwanted regular
patterns. Two nonlinear filter classes are consideredexture patterns. The purpose of this paper is to intro-
polynomial and median type filters. We found that re-duce certain nonlinear operators with small kernels for
duction of regular patterns without producing excessivelyhe error diffusion that reduce the regular patterns in the
grainy images is obtained using a combination of lineaoutput image. Nonlinear operators generate a more com-

and median error feedback operators. plicated behavior of the error feedback. The use of poly-
) nomial and also very nonlinear median type feedback
1 Introduction operators can, in theory, lead to more chaotic patterns

thus reducing annoying regularities. More complicated
Digital halftoning is needed when displaying continu-halftoning methods that produce aperiodic patterns have
ous-tone images on binary devices (such as displays, laeen studied by others, e.g., in Ref. 8. We consider two
ser printers, and fax machines). When the halftonedlasses of nonlinear filters for the error feedback opera-
image consisting of black and white dots is viewed, theaor: polynomial (quadratic) and median type filters.
image passes through the complex human visual system, The principles of nonlinear filters are described in
which has low pass type characteristics, with the overalbections 3 and 4. In Section 5, the actual error diffusion
effect being that the image appears to have continuousperators that are based on the quadratic and median fil-
form. The most popular digital halftoning algorithms in- ters are described and the test results are presented. Sec-
clude ordered dithérand error diffusiori-* Recently, tion 2 gives a brief overview of error diffusion.
more complicated halftoning methods based on the mini-

mization of error metrics (using simulated annealing, 2 Error Diffusion
neural networks, linear programming, etc.) have been
presented.’ Error diffusion (ED) for binary displays was introduced

When comparing halftoning algorithms, low- and by Floyd and Steinberg in 1973%n error diffusion (Fig.
high-frequency rendition, processing artifacts, and prod), the image sample (pixel) is compared to a threshold
cessing complexity are considered. It is well known thafusually the middle value of the gray scale). If the gray
the human visual system is less sensitive to errors in highvalue of the pixel is less than the threshold, it is set to
frequency components than errors in low frequenciesblack. Otherwise, the pixel is white. The resulting im-
Dithering algorithms are designed to move the halftoningage consists of black and white dots. The density of the
error to the higher frequency components. Ordered dithetots determine the gray level. The halftoned binary pixel
consists of thresholding the samples of the continuous compared to the value of the current pixel before
tone image with a periodic screen (dither matrix) to dethresholding (to which part of the weighted previous er-
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ror has been added) and the error is distributed onto urvhereB(w,,w,) andl(w,,w,) are the Fourier transforms
processed pixels according to the weights of the erroof the halftoned image and the original image, respec-
feedback operator. The error feedback operator detetively, andH(w,,w,) is the frequency response of the er-
mines to which pixels the halftoning error is diffusedror filter. For the model of uncorrelated quantization
and how much weight is put to these pixels. This imoise, the exact form of the filter and its size do not have
equivalent to filtering the past halftoning errors and addan effect on the underlying image. The image and the
ing the filtered error to the present pixel. guantization noise are, of course, highly correlated,
meaning that the image will also be subject to filtering.
As a result, in practice the filter size has a marked effect
A on the appearance of halftoned imagEsr instance, an
i v edge preserving error feed-back operator with large mask
size appears to create sharp edges by an “overshooting”
- type of behavior, as is evident, e.g., in the experiments
reported in Ref 10. It would thus be desirable to develop
(erROR  FEEDBACK | ] . error feedback operators with a small mask that would
produce less regular patterns than the Floyd and
Steinberg algorithm.
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Figure 1. Block diagram of the error diffusion method.

Floyd and Steinberg Jarvis, Judice, and Ninke (1976):
(1975):
The error diffusion algorithm can be described by . 7 * 75
the following equations 35753
) 8351 13531
ia(mn) =i,(mn)+% h(r,s)eg(m-r,n-s), (D Stucki (1981):
, , ’ . - 8 4
wherei,(m,n) is the corrected gray level of the original 248 4 2

valuei(m,n), h(r,s) are the weights of the error diffusion
operatormis the index number of the rows, anis the 12421

index number of the columns. If the gray scale of the Figure 2. Operator masks for the error diffusion.
input image is & i(m,n) < 1, the threshold operation is

described by Comparison of error diffusion algorithms is com-

- plicated, because the visual quality of the resulting im-
b(mn) = Q[fa(m,n)] =§; if ia(n}n) 21/2 (2) age depends also on the tone scale of the original image.
, otherwise, In practice, for a given device and halftoning method,
one can optimize the visual quality of halftones by ad-
whereb(m,n) is the quantized (binary) output image andjusting the tone scale of the original imagé contrast
1.(m,n is the modified (and tone scale corrected) inpuenhancement is desired, the midrange gray levels can be
image. The quantization error that is distributed to thanapped to lighter values and the number of gray levels
future pixels is can be reduced so that several light gray values are
mapped to 255 (the maximum gray value) and several
ém,n =1,(m,n) —b(m,n). (3) dark gray values to 0. Figure¢ 8hows an example of
this kind of mapping.

Floyd and Steinberg found that at least four weights
(Fig. 2) were needed in order to achieve good results. 1 T /
The Floyd and Steinberg algorithm reproduces fine de-
tails well, but some artifacts can be seen: regular pat-
terns and diagonal line structures. Several authors have
suggested larger operator masks. Two of those masks are
shown in Fig. 2. The operator weights need to be nor-
malized in order to retain the intensity level of the input
image. The large operator masks remove the regular pat-
terns that appear when using the Floyd and Steinberg
mask (Fig. 7). The algorithm by Jangsal. is reported
to produce sharp edges, e.g., in Ref. 9, but images are
grainier than images obtained with the Floyd and

Adjusted Gray Level
T
l

Steinberg algorithm. Assuming that the quantization er- /

ror can be expressed as an uncorrelated noise source 0 1

Q(w,,w,), the halftoning process is expressed in the fre- o l
quency domain as Input Gray Level

Figure 3. An example of tone scale adjustment. The straight
B(w,,w,) = I(w,w,) + [1 —H(w,n,)]Q(w,,w,), (4) lineis a reference for no-change transformation.
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3 Quadratic Operators In general, to preserve any constant input gray level
the constant term of the quadratic filter should be zero,

If an error diffusion operator has a large mask size, itthe sum of the linear filter coefficients should be one,
behavior on different types of edges becomes difficuland the sum of the coefficients of quadratic terms ¥ero.
to control. Thus, we wish to keep the mask size as smaHowever, in the case of error diffusion (with a linear
as possible. Furthermore, the use of a small operataperator), all the operator coefficients should be posi-
mask simplifies the implementation. To keep the maskive and sum to oneThe quadratic error diffusion op-
size small (four coefficients) and to reduce the regulaerator structures that we tested are shown in Sec. 5.
patterns of the halftoned image, one possibility is to use
a nonlinear error diffusion operator. The goal would be 4 Median Type Operators
to obtain behavior that would be chaotic in the sense
that no annoying periodicities would be produced. Anln addition to the quadratic operators, we studied the
interesting nonlinear filter class is the class of polyno-use of median type operators in reducing the regular
mial (or Volterra) filtersi*-*2 The input-output relation patterns produced by error diffusion. The median filter
of the polynomial filter is expressed in the form of aand median type filters are widely used in image pro-
truncated discrete Volterra series. The second-orderessing applications as they remove impulsive noise
Volterra filter consisting of a parallel combination of lin- while retaining edges. Because the median operation is
ear and quadratic filters has been successfully used ttased on ordering relation, it is highly nonlinear. Thus,
improve the performance of linear filte¥st* These fil- it is not possible to have a polynomial filter of low order
ters are called quadratic filters. It is well known that in-exhibiting similar performance. This indicates that median
creasing the degree of a polynomial system will, intype filters could be useful in the feedback loop. The
general, lead to systems with more complicated behavwnedian filter for digital signal processing was first pre-
ior. In the case of error diffusion, our experiments indi-sented by Tukey in 1974, cf. in Ref. 14. It is defined by
cate that quadratic operators have high enough order to

obtain sufficient nonlinearity to reduce the regularities Y(n)= MED[X(n — K),....X(n),... X(n + K), (9)
in the halftoned images. Higher order terms do not have
much effect on the results. whereX(n) andY(n) are the input and output signals, re-

A useful property of polynomial filters is that the spectively. The filter length il = 2K + 1. The median is
output depends linearly on the filter coefficients. Thisthe centermost sample value of the ordered input sequence:
characteristic is important in the analysis and design of

polynomial filters. Polynomial filters are described by if Xay S XS oo € Xigany
the discrete Volterra series (for the 1-D case) as follows: (10)
o then MEDX, Xy, ... Xocea] = X+ 1)
Y =hy + 5 Rlx(n)], (5) o
where k=1 As can be seen, the output of the median filter is
one of the input sample values.
h -5 .5 i i The median filter has been generalized to allow the
X inz:o iklz:o Malluy--ha) () Veighting of the samples by Justusson, cf. in Ref. 15.
X(n=1y). . x(N=ijg)- Non-negative weights are assigned to all the samples

inside the filter window. The weights denote the number
of repetitions for each input sample inside the filter win-
dow. For an ordered input sequence the weighted me-
dian (WM) filter can be compactly expressed by

In the above formula$y is a constant (offset) term,
h,(i,) is the impulse response of a linear IIR filter, and
h(i,,...4,) can be considered as a generalikéda-order
impulse response (i.e., the nonlinear part of the filter).
A complete quadratic filter is then described by the first
three terms of the Volterra series. For the 2-D case the
linear operator = 1) can be expressed by

Y(n) = MED[W,, ¢ X(n - L),...,
WO X(N),..., W, 0 X(n + R)], (11)

whereW.,..., W,,... W; are the weightsyW ¢ X means
repeating the sampkWtimes, and., Rdenote the left-

_ NoINL most and the right-most samples, respectively. The
ho[X(no)1 = 3 % hp(ingisn) weighted median filters have been shown to belong to
a=012=0 (7)  the class of stack filter§27

BX(ny —igq, My —igp),
5 Experimental Results
whereN,, N, is the size of the filter kernel. The nonlin-
ear (quadratic) operator for the 2-D case is expressed By1 Quadratic Error Diffusion Operators
We tested several types of quadratic error diffusion

_ N1 Nl Nl N operators. The optimal weights for both the linear part
hlX(um)l= 5 5 3 3 heolininianiz) and the quadratic part of the quadratic ED operator were
70 10 170 1270 determined experimentally. We used the same mask as
B(ny — g0, —igp), (8) in the linear error diffusion case:

(3l Y PRl PPY B
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ern—Ln—l em—l,n em—],n+1 5VB (12) ma a Ca,B Ca,y Ca,a O
€nnt Xmn a C= %ﬁya Csp Sy Cpop (16)
e C C c, U
. . y.a yB vy Yo
wheree, .1, €, 1.1, Bn1» @aNde, , ., are the quantization 8:5’[1 Csp Csy 05,55

errors for the corresponding input pixels. The pixés$
the current pixel to be halftoned. The constant tbgm
[Eq. (5)] is set to zero. Let us use the following short-
hand notation for the indices=(m,n-1),3 = (m-1,n+1),
y=(m-1n), andd = (m-1n-1). For examples,, , €, 1n:1 =

Obviously, we can choose the matfixto be sym-
metric, i.e,c,, = C,., {,n0O{a,B,y,5}.

We tested the quadratic error diffusion operator for
e,&:. As a result, the linear part of the quadratic filterdm:jerent klrlu_:is of 'mag.es' azlolylvly vaLylng gray v(\j/edge
[Eq. (7)] is described by and natural images. Figure 4 shows the gray wedge test

image. For the natural test images, we applied the tone
fn = a6, + a6 +ag, + a8, (13) scale adjustmerttto yield halftoned images with in-
creased contrast. As image quality metrics are difficult

wherea/’s are the linear filter coefficients: to apply in the present settings, the performance of the

Xon 8y different methods was evaluated visually.
a a a (14) It was found that the requirement of the sum of the
P v ™ guadratic coefficients to be zero (Sec. 5) results in low-

guality halftoned images and thus only positive coeffi-
cients were used. Also, the sum of all error diffusion
coefficients was set equal to one in order to keep the
guantization error bounded.

The results for a quadratic ED operator wath =

The nonlinear part of the quadratic filter for the
above pixels is obtained from Eq. (8):

— 2
fQUAD - Ca,aea + Ca,,Beaep + Ca,yeaey + Ca,éeaeé

+Cp0 €58 *Cp €5 *Cp, €4 +Cp 5€485 14/46,a_,,= 8/46,8,, = 12/46 3, , = 6/46, and:, = 1/46,
+C, 46,6, +C, 56,65 +C,, €] +C, 56,65 (15) a =[a,.a;,a,,a,] = (1/46) x[14,8,12,6],
*C54€5€ *C5 36563 +C5,65€, +C§,ae§v m 1110
d111p (17)
where the quadratic coefficients can be expressed as the G=Q48)xo . | g
matrix a 11 1%

Figure 4. The original test images: (a) gray wedge, (b) girl, and (c) yachts.
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Figure 6. Halftoned images using the quadratic error diffusion operator (with the diagonal quadratic coefficients).

are shown in Fig. 5. The above mentioned linear coeffi-
cients,a, were found to be the best. The results indicate
that all the practical advantage of the quadratic terms
can be achieved by using only the diagonal quadratic
coefficients. The following weights

a =[a,.85,8,,8;] = (1/47) x[14,8,12,6],
3 0 0 0O

C =(1/47)%

g ts]

o O -

0
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(b)

(©)

Figure 7. Halftoned images using linear error diffusion operators: (a) Floyd and Steinberg operator, (b) Jarvis, Judicenkend Ni
operator, and (c) Stucki operator.
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Figure 8. Halftoned images using the quadratic error diffusion operator (a)Fig. 6 with a 30% random threshold.

give fairly good results. The images have a clear appeaweights does not improve the performance of the WM

ance, partly resulting from fewer gray levels (Fig. 6).ED operator. We also tested larger filter masks [Figs.
Comparing these images to the linear (Floyd an®(b) and 9(c)], but the resulting images were more coarse
Steinberga, ,= 7/16,a_,, = 3/16,8,, = 5/16,a,, = 1/16,  than with the smaller mask.

Fig. 2) ED filter, Fig. 7(a), shows that the regular pat-

terns are considerably reduced. Figures 7(b) and 7(c)

111 111
show the results for the bigger error diffusion masks of 1 3 2 1111 1211
Fig. 2. These images lack disturbing regular patterns, 3 e
but they are more grainy than the images obtained with @ 11 .(b) 12 '(C)

a smaller mask.
The regular patterns of the error diffused images cafigure 9. Masks for the WM error diffusion operateris the
be further reduced by perturbing the operator coefficientsurrent pixel to be halftoned. The numbers denote the weights.
or the threshold. We tested the effect of perturbing the
threshold both for the linear and nonlinear ED opera-
tors. Figure 8 shows the results for the quadratic ED  As the WM error diffusion operator does not work
operator of Fig. 6 with a perturbated threshold. Thevery well alone, we combined it with the polynomial ED
threshold was randomly selected between the limits obeperator:
tained by adding to and subtracting from the threshold
30% of the fixed value. It can be seen that the regular MED9[2 ¢ €, 161 101:2 © €10 Cntnts
patterns have totally disappeared, but the images have 20 €, 011 Bntne1Cntndl- (20)
grainy appearance.
The results were not good, &3, 6,1, aNd€,, 1 1116n 171
5.2 Median Type ED Operators change the signal level, i.e., give darker images than the
We expected that the good properties of the medianriginal ones. When dividing,, 4,1, ande,, ;16,11 DY
would also show in this application. We used theone of the error values and changing the weights some-
weighted median (WM) error diffusion operator [Fig. what,

9(a)] described by MED9[3¢ €,,129 €112 O €10t
X €1 d(En1pntl), (21)
MED9[3¢ €,,1,2 9 €,101,30 € ip€nind. (19) €n11€m10-o/ (€ pat )],

The WM ED operator performs the halftoning op- we obtained better results (Fig. 11). However, disturb-
eration correctly, but as can be seen from Fig. 10, thing line structures are clearly seen. The reason for the
halftoned values change too slowly. Changing theoor behavior of the WM filter in error diffusion is prob-
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Figure 11. Halftned images using the combined weighted median and polynomial error diffusion operator.

ably that its operation is somewhat too coarse and thersize four are
fore small differences cannot be distinguished. .. .. e,

A median hybrid ED operator offers an interesting Lt e oLt (22)
possibility, as it combines linear operations with the non- Gt Xmn
linear median operation. Detail preservation is achieved
through the small subfilters, and the median operation

Oe . .+e . —e . _
reduces the regular patterns. We tested different combi- MED3Dem’n 1/29+m(1,n i i’” !
nations of linear subfilters with mask sizes four and five. ma-1 Cn-tnea ¥ Cmtyr4 (23)
The filter mask and the median hybrid ED filter for mask H2€ 01+ €naner * €t + Emeanaa) /5.
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Figure 13. Halftoned using the median hybrid ED operator of Eq. (25).

The result of using the above mentioned median
hybrid ED operator for the gray wedge image is shown
in Fig. 12. It can be seen from the image that regular
patterns are still visible.

We added one more pixel to the mask in order to make
the median hybrid ED operator as symmetric as possible.
The mask and the corresponding median hybrid operator
are

Hemn1 *€m-1n)/2
Bem—l,ml +€ngne)/ 2

em,n—l + em—l,n+1 + em—],n (25)
H *enin1t€nan)/5

MED3|

Figure 13 shows the results after halftoning the test

Cm-2n images with the median hybrid ED operator of Eq. (25).
€n-in-1 Cm-in Emina (24) It can be seen from the gray wedge image that regular
€nnt  Xmn structures are reduced considerably. In addition, the
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structure of patterns is finer than using the Jaetial. 6.
operator. Thus, the suggested algorithm preserves better
fine details. Especially, the middle gray regions are well
rendered. The median operation is simple, as it is taken
only over three samples. The subfilters enable the use @f
the simple median operation.

However, memory requirement is increased due to
the additional pixel (compared to the Floyd and Steinberg.
ED operator).

6 Conclusions 9.

We have introduced nonlinear error diffusion filters in

order to reduce the annoying regular patterns of the et-0.

ror diffused halftones using as small a mask size as pos-
sible. Besides reducing the regular patterns, the good

detail rendition of the error diffusion method should be11.

preserved. Furthermore, there is a trade-off between
granularity (or detail preservation) and regular structures.
With small mask sizes, fine details are preserved, but

regular patterns appear. With large masks, on the othae.

hand, no regular structures are present, but images are
grainy. We tested several polynomial and median type

error diffusion operators using the gray wedge test image3.

and several natural images. We found that the median hy-
brid error diffusion operator is a good compromise.
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